
chariots Documentation
Release 0.2.4

Antoine Redier

Jun 09, 2021

CONTENTS:

1 Installation 1
1.1 Stable release . 1
1.2 From sources . 1

2 General Principles 3
2.1 Versioning . 3
2.2 Pipelines, Nodes & Ops . 4

3 Tutorials 7
3.1 Iris Tutorial . 7

4 Api Docs 11
4.1 chariots.base . 11
4.2 chariots.callbacks . 18
4.3 chariots.nodes . 20
4.4 chariots.ops . 24
4.5 chariots.runners . 25
4.6 chariots.savers . 25
4.7 chariots.serializers . 26
4.8 chariots.sklearn . 27
4.9 chariots.keras . 29
4.10 chariots.versioning . 30
4.11 chariots.cli . 34
4.12 chariots.errors . 34

5 Chariots template 41
5.1 File Structure . 41
5.2 tools . 42

6 Contributing 43
6.1 Types of Contributions . 43
6.2 Get Started! . 44
6.3 Pull Request Guidelines . 44
6.4 Tips . 45
6.5 Deploying . 45

7 Credits 47
7.1 Development Lead . 47
7.2 Contributors . 47

8 History 49

i

8.1 0.1.0 (2019-06-15) . 49
8.2 0.2.0 (2019-06-15) . 49

9 chariots 51
9.1 Getting Started: 30 seconds to Chariots: . 51
9.2 Features . 52
9.3 Comming Soon . 53
9.4 Credits . 53

10 Indices and tables 55

Python Module Index 57

Index 59

ii

CHAPTER

ONE

INSTALLATION

1.1 Stable release

To install chariots, run this command in your terminal:

$ pip install chariots

This is the preferred method to install chariots, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.2 From sources

The sources for chariots can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/aredier/chariots

Or download the tarball:

$ curl -OL https://github.com/aredier/chariots/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

1

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/aredier/chariots
https://github.com/aredier/chariots/tarball/master

chariots Documentation, Release 0.2.4

2 Chapter 1. Installation

CHAPTER

TWO

GENERAL PRINCIPLES

2.1 Versioning

One of the key principles of Chariots is versioning. This means that Chariots will enforce what we consider to be good
versioning practices during the deployment, retraining and updating phases over the lifetime of your your Chariots
app.

2.1.1 Why Version Machine Learning Pipelines?

You might ask yourself why we would need to version the different models in our ML pipelines. For Kaggle competi-
tion I just train my models in order predict on the test set and submit right? Although this workflow works to a certain
extent on small production project it can soon become quite a mess.

For instance if you try to build an NLP micro-service in your architecture, you will probably have a unique well
performing word embedding model and several other smaller models (intent classifier, POS, . . .) that you retrain more
often. In this setup you have two choices when it comes to training:

• you can retrain every model in the right order every time you redeploy your micro-service. This is the extension
of the Kaggle approach but means you will end up loosing some time retraining unnecessary models (which will
slow down your deployment process and cost you in machine time)

• you can trust yourself to know what models need to be retrained and to do it right each time. If you choose
to do this you will eventually end up in a mess where you forgot to retrain a classifiers after retraining your
embedding model (and your classifier outputting nonsense . . .)

Chariots provides you with a third option by enforcing the versioning logic in your pipelines framework. This means
that when you try to load (at start up or after a manual retrain) a pipeline, Chariots will check that every model has a
valid link (has been trained with) to the version of the preceding model and will not load if said valid link is not found

2.1.2 Semantic Versioning in Chariots

Chariots tries to stick to the Semantic Versioning guidelines. This means that all the versions in Chariots are comprised
of three subversions (Major, Minor, Patch). This also means that the checks chariots makes on versions (described
above) will only apply to the major versions (although we plan to make this user customizable in the future).

One major difference between Chariots and traditional Semantic versioning is the use of incremental number. For
practical reasons, chariots uses three hashes instead of thee numbers and the ordering of those versions comes from
the time stamp of the version.

3

https://semver.org

chariots Documentation, Release 0.2.4

2.1.3 Version and Pipeline Interactions

In this section we will try to explain in more details how chariots creates and updates links between different versions
of your models.

Chariots treats each pipeline as a DAG using part of some shared nodes. if we take back our NLP example:

here a link between to nodes of a pipeline represents a valid version meaning that that here all the nodes accept their
parent node in the pipeline. However if we retrain our embeddings, our DAGs will look like this:

here there is no valid link between the embedding and the other models (POS and Intent). We than need to retrain and
recreate those links:

Once this is done a new version of our POS and intent models have been created and a valid link has been submitted
by the training pipelines. when trying to reload the prediction pipelines, those will see this new link and accept the
new versions of their nodes.

2.2 Pipelines, Nodes & Ops

The Chariots framework is built around three main types that we use to build a Chariots server: Pipelines, Nodes and
Ops. In this article we will go over those three main building blocks in general terms. You can of course check the
API documentation to check how to use them technically.

2.2.1 Ops

Ops are the atomic computational unit in the Chariots framework, meaning that they are part of a more complete
pipeline that couldn’t (or at least it wouldn’t make sense to) be divided in smaller chunks of instruction. Ops are
actually the only types that are versioned in the framework (also nodes have versions that are derived from ops).

For instance a machine learning model will be an Op versioned according to it’s several parameters and it’s last training
time.

Also ops have requirements (in terms of number and types that they receive as arguments to their execute method) they
are treated as agnostic from the pipeline they are called in (an op can be used in multiple pipelines for instance)

2.2.2 Nodes

Nodes represent a slot in a pipeline meaning. They define the interactions within the pipelines by connecting to their
upstream and downstream node(s). Nodes can be built upon Ops (Node(my_op)) but not necessarily, for instance
DataNodes are opless nodes, moreover ABTesting nodes (feature of the upcoming 0.3 release) would nodes using
multiple ops. Another example wound be to use whole pipelines to execute the slot of a node (Node(my_pipeline)

For instance a node would represent the preprocessing slot in a pipeline that you could use Op1 or Op2 to fill that slot
(or both in the case of ABTesting).

4 Chapter 2. General Principles

chariots Documentation, Release 0.2.4

2.2.3 Pipelines

Pipelines are callable collections of nodes that are exposed to your users through the Chariots server (you can also use
them directly but it is not the recommended way of using them). They can also be used inside other pipelines to fill in
a specific node’s slot.

In these few pages, we will discuss the guiding principles and general logic behind the Chariots development. These
will be theoretical guides to understand the major rationale behind the technical decisions taken in the framework.

As the framework is still in its early stage and evolving quite rapidly, these principles are not yet fully implemented.

2.2. Pipelines, Nodes & Ops 5

chariots Documentation, Release 0.2.4

6 Chapter 2. General Principles

CHAPTER

THREE

TUTORIALS

We have provided a (more coming . . .) basic tutorial to demonstrate the basics of the Chariots framework and get you
going quickly.

3.1 Iris Tutorial

In this beginners tutorial we will build a small Chariots server to serve predictions on the famous iris dataset. If you
want to see the final result, you can produce it directly using the chariots new command (see the chariots template for
more info).

before starting, we will create a new project by calling the new command in the parent directory of where we want our
project to be and leave all the default options

chariots new

3.1.1 Ops

we first need to design the individual ops we will build our pipelines from.

Data Ops

First we will need an op that downloads the dataset, so in iris/ops/data_ops/download_iris.py

>>> import pandas as pd
>>> from chariots.base import BaseOp
>>> from sklearn import datasets
...
...
>>> class DownloadIris(BaseOp):
...
... def execute(self):
... iris = datasets.load_iris()
... df = pd.DataFrame(data=iris['data'], columns=iris['feature_names'])
... df["target"] = iris["target"]
... return df

7

chariots Documentation, Release 0.2.4

Machine Learning Ops

we will than need to build our various machine learning ops. For this example we will be using a PCA and than a
Random Forest in our pipeline. We will place those ops in the iris.ops.model_ops subpackage

>>> from sklearn.decomposition import PCA
>>> from chariots.versioning import VersionType, VersionedFieldDict
>>> from chariots.sklearn import SKUnsupervisedOp
...
...
>>> class IrisPCA(SKUnsupervisedOp):
...
... model_class = PCA
... model_parameters = VersionedFieldDict(
... VersionType.MAJOR,
... {
... "n_components": 2,
... }
...)

>>> from chariots.versioning import VersionType, VersionedFieldDict
>>> from chariots.sklearn import SKSupervisedOp
>>> from sklearn.ensemble import RandomForestClassifier
...
...
>>> class IrisRF(SKSupervisedOp):
...
... model_class = RandomForestClassifier
... model_parameters = VersionedFieldDict(VersionType.MINOR, {"n_estimators": 5,
→˓"max_depth": 2})

Preprocessing Ops

we will not be using preprocessing ops per say but we will need an op that splits our saved dataset between X and y as
otherwise we will not be able to separate the two.

>>> from chariots.base import BaseOp
...
...
>>> class XYSplit(BaseOp):
...
... def execute(self, df):
... return df.drop('target', axis=1), df.target

3.1.2 Pipelines

We will than need to build our pipelines using the nodes we have just created:

Data Pipelines

We have our op that downloads the dataset. We than need to feed this dataset into a data saving node that will persist
it for future uses (as the iris dataset is quite light, we could wire the download directly into the training pipeline but
we will persist it to demonstrate that dynamic).

8 Chapter 3. Tutorials

chariots Documentation, Release 0.2.4

>>> from chariots import Pipeline
>>> from chariots.nodes import DataSavingNode, Node
>>> from chariots.serializers import CSVSerializer
...
...
>>> download_iris = Pipeline(
... [
... Node(DownloadIris(), output_nodes="iris_df"),
... DataSavingNode(serializer=CSVSerializer(), path="iris.csv",
... input_nodes=["iris_df"])
...], "download_iris"
...)

Machine Learning Pipelines

Once we have our data set saved, we will need to use it to train our models, we will than create a training pipeline:

>>> from chariots import MLMode, Pipeline
>>> from chariots.nodes import DataLoadingNode, Node
>>> from chariots.serializers import CSVSerializer
...
...
>>> train_iris = Pipeline(
... [
... DataLoadingNode(serializer=CSVSerializer(), path="iris.csv",
... output_nodes="iris"),
... Node(XYSplit(), input_nodes=["iris"], output_nodes=["raw_X", "y"]),
... Node(IrisPCA(MLMode.FIT_PREDICT), input_nodes=["raw_X"],
... output_nodes="pca_X"),
... Node(IrisRF(MLMode.FIT), input_nodes=["pca_X", "y"])
...], "train_iris"
...)

Once the models will be trained, we will need to provide a pipeline for serving our models to our users. To do so, we
will create a pipeline that takes some user provided values (raws of the iris format) and retruns a prediction to the user:

3.1.3 App & Client

Once our pipelines are all done, we will only need to create Chariots server to be able to serve our pipeline:

>>> from chariots import Chariots
...
...
>>> app = Chariots(
... [download_iris, train_iris, pred_iris],
... path=app_path,
... import_name="iris_app"
...)

Once this is done we only need to start our server as we would with any other Flask‘app (the ‘Chariots type inherits
from the Flask class). For instance using the cli in the folder containing our app.py:

3.1. Iris Tutorial 9

chariots Documentation, Release 0.2.4

flask

our server is now running and we can execute our pipelines using the chariots client:

>>> from chariots import Client
...
...
>>> client = Client()
...

we will need to execute several steps before getting to a prediction:

• download the dataset

• train the operations

• save the trained machine learning ops

• reload the prediction pipeline (to use the latest/trained version of the machine learning ops)

>>> client.call_pipeline(download_iris)
>>> client.call_pipeline(train_iris)
>>> client.save_pipeline(train_iris)
>>> client.load_pipeline(pred_iris)
...
>>> client.call_pipeline(pred_iris, [[1, 2, 3, 4]])
[1]

10 Chapter 3. Tutorials

CHAPTER

FOUR

API DOCS

4.1 chariots.base

The Base Module Gathers all the main classes in the Chariots framework that can be subclassed to create custom
behaviors:

• creating new Ops for preprocessing and feature extraction (subclassing BaseOp)

• supporting new ML frameworks with BaseMLOp

• creating a custom node (ABTesting, . . .) with the BaseNode

• changing the execution behavior of pipelines (Multiprocessing, cluster computing, . . .) with BaseRunner

• saving your ops and metadata to a different cloud provider with BaseSaver

• creating new serialisation formats for datasets and models with BaseSerializer

class chariots.base.BaseOp(op_callbacks: Optional[List[chariots.callbacks._op_callback.OpCallBack]]
= None)

Bases: object

The ops are the atomic computation units of the Chariots framework. Whereas a Node represents a slot in a
pipeline and the interactions between that spot and the rest of the pipeline, the op will actually be doing the
computation.

To subclass the BaseOp class and create a new Op, you need to override the execute method:

>>> class AddOp(BaseOp):
... number_to_add = 1
...
... def execute(self, op_input):
... return op_input + self.number_to_add

and then you can execute the op alone:

>>> AddOp().execute(3)
4

or within a pipeline (that can be deployed)

>>> pipeline = Pipeline([Node(AddOp(), ["__pipeline_input__"], "__pipeline_output_
→˓_")], "simple_pipeline")
>>> runner.run(pipeline, 3) # of course you can use a `Chariots` server to serve
→˓our pipeline and op(s)
4

11

chariots Documentation, Release 0.2.4

The BaseOp class is a versioned class (see the versioning module for more info) so you can use VersionedField
with it

>>> class AddOp(BaseOp):
... number_to_add = VersionedField(3, VersionType.MAJOR)
...
... def execute(self, op_input):
... return op_input + self.number_to_add

>>> AddOp.__version__
<Version, major:36d3c, minor: 94e72, patch: 94e72>
>>> AddOp.number_to_add
3

and changing the field will change the version:

>>> class AddOp(BaseOp):
... number_to_add = VersionedField(4, VersionType.MAJOR)
...
... def execute(self, op_input):
... return op_input + self.number_to_add

>>> AddOp.__version__
<Version, major:8ad66, minor: 94e72, patch: 94e72>

Parameters op_callbacks – OpCallbacks objects to change the behavior of the op by executing
some action before or after the op’execution

after_execution(args: List[Any], output: Any)→ Any
method used to create a one-off (compared to using a callback) custom behavior that gets executed after
the the op itself

Parameters

• args – the arguments that were passed to the op

• output – the output of the op

property allow_version_change
whether or not this op accepts to be loaded with the wrong version. this is usually False but is useful when
loading an op for retraining

before_execution(args: List[Any])
method used to create a one-off (compared to using a callback) custom behavior that gets executed before
the the op itself

Parameters args – the arguments that are going to be passed to the operation

execute(*args, **kwargs)
main method to override. it defines the behavior of the op. In the pipeline the argument of the pipeline will
be passed from the node with one argument per input (in the order of the input nodes)

execute_with_all_callbacks(args)
executes the op itself alongside all it’s callbacks (op callbacks and before/after_execution methods)

Parameters args – the arguments to be passed to the execute method of the op

Returns the result of the op

12 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

property name
the name of the op. this is mainly use to find previous versions and saved ops of this op in the op_store

property op_version
the version the op uses to pass to the pipeline to identify itself. This differs from the __version__ method
in that it can add some information besides the class Fields (for instance last training time for ML Ops)

class chariots.base.BaseMLOp(mode: chariots._ml_mode.MLMode, op_callbacks: Op-
tional[List[chariots.callbacks._op_callback.OpCallBack]] =
None)

Bases: chariots.ops._loadable_op.LoadableOp

an BaseMLOp are ops designed specifically to be machine learning models (whether for training or inference).
You can initialize the op in three distinctive ml mode:

• FIT for training the model

• PREDICT to perform inference

• FIT_PREDICT to do both (train and predict on the same dataset

the usual workflow is to a have a training and a prediction pipeline. and to:

• execute the training pipeline:

• save the training pipeline

• reload the prediction pipeline

• use the prediction pipeline

here is an example:

first create your pipelines:

>>> train = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.FIT_PREDICT), input_nodes=["x"], output_nodes="x_
→˓transformed"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train')

>>> pred = Pipeline([
... Node(PCAOp(MLMode.PREDICT), input_nodes=["__pipeline_input__"], output_
→˓nodes="x_transformed"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes=['__pipeline_output__'])
...], 'pred')

and then to train your pipelines and make some predictions:

>>> client.call_pipeline(train)
>>> client.save_pipeline(train)
>>> client.load_pipeline(pred)
>>> client.call_pipeline(pred, [[1, 2, 3, 4]])
[1]

If you want to create a new MLOp class (to accommodate an unsupported framework for instance), you need to
define:

• how to fit your op with the fit method

• how to perform inference with your op with the predict method

4.1. chariots.base 13

chariots Documentation, Release 0.2.4

• define how to initialize a new model with the _init_model method

and eventually you can change the serializer_cls class attribute to change the serialization format of your model

Parameters op_callbacks – OpCallbacks objects to change the behavior of the op by executing
some action before or after the op’s execution

property allow_version_change
whether or not this op accepts to be loaded with the wrong version. this is usually False but is useful when
loading an op for retraining

execute(*args, **kwargs)
executes the model action that is required (train, test or both depending in what the op was initialized with

abstract fit(*args, **kwargs)
fits the inner model of the op on data (in args and kwargs) this method must not return any data (use the
FIT_PREDICT mode to predict on the same data the op was trained on)

load(serialized_object: bytes)
Receives serialize bytes of a newer version of this class and sets the internals of he op accordingly.

Parameters serialized_object – the serialized bytes of this op (as where outputed by the
serialize method

property mode
the mode this op was instantiated with

property op_version
the version the op uses to pass to the pipeline to identify itself. This differs from the __version__ method
in that it can add some information besides the class Fields (for instance last training time for ML Ops)

abstract predict(*args, **kwargs)→ Any
the method used to do predictions/inference once the model has been fitted/loaded

serialize()→ bytes
serializes the object into bytes (to be persisted with a Saver) to be reloaded in the future (you must ensure
the compatibility with the load method

Returns the serialized bytes representing this operation

serializer_cls
alias of chariots.serializers._dill_serializer.DillSerializer

training_update_version = 'patch'

class chariots.base.BaseRunner
Bases: abc.ABC

a runner is used to define the execution behavior of a Pipeline. there main entry point is the run method

>>> runner.run(is_odd_pipeline, 3)
True

To create a new runner (for instance to execute your pipeline on a cluster) you only have to override run method
and use the Pipeline’s class methods (for instance you might want to look at extract_results, execute_node)

abstract run(pipeline: chariots._pipeline.Pipeline, pipeline_input: Optional[Any] = None)
runs a pipeline, provides it with the correct input and extracts the results if any

Parameters

• pipeline – the pipeline to run

• pipeline_input – the input to be given to the pipeline

14 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

Returns the output of the graph called on the input if applicable

class chariots.base.BaseSaver(root_path: str)
Bases: abc.ABC

abstraction of a file system used to persist/load assets and ops this can be used on the actual local file system of
the machine the Chariots server is running or on a bottomless storage service (not implemented, PR welcome)

To create a new Saver class you only need to define the Save and Load behaviors

Parameters root_path – the root path to use when mounting the saver (for instance the base path
to use in the the file system when using the FileSaver)

load(path: str)→ bytes
loads the bytes serialized at a specific path

Parameters path – the path to load the bytes from.You should not include the root_path of the
saver in this path: loading to /foo/bar.txt on a saver with /my/root/path as root path will load
/my/root/path/foo/bar.txt

Returns saved bytes

save(serialized_object: bytes, path: str)→ bool
saves bytes to a specific path.

Parameters

• serialized_object – the bytes to persist

• path – the path to save the bytes to. You should not include the root_path of the saver in
this path: saving to /foo/bar.txt on a saver with /my/root/path as root path will create/update
/my/root/path/foo/bar.txt

Returns whether or not the object was correctly serialized.

class chariots.base.BaseSerializer
Bases: abc.ABC

serializers are helper classes for communication and persistence through out the Chariots framework. There
mostly used by data nodes and and MLOps.

For instance if you want to make a pipeline that downloads the iris dataset splits it between train and test and
use two different formats for the train and test (please don’t . . .):

>>> save_train_test = Pipeline([
... Node(IrisDF(), output_nodes='df'),
... Node(TrainTestSplit(), input_nodes=['df'], output_nodes=['train_df',
→˓'test_df']),
... DataSavingNode(serializer=CSVSerializer(), path='/train.csv', input_
→˓nodes=['train_df']),
... DataSavingNode(serializer=DillSerializer(), path='/test.pkl', input_
→˓nodes=['test_df'])
...], "save")

fot MLOps if you want to change the default serialization format (for the model to be saved), you will need to
change the serializer_cls class attribute

abstract deserialize_object(serialized_object: bytes)→ Any
returns the deserialized object from serialized bytes (that will be loaded from a saver)

Parameters serialized_object – the serialized bytes

Returns the deserialized objects

4.1. chariots.base 15

chariots Documentation, Release 0.2.4

abstract serialize_object(target: Any)→ bytes
serializes the object into bytes (for ml ops target will be the model itself and not the op, for the data ops
the target will be the input of the node)

Parameters target – the object that will be serialized

Returns the bytes of the serialized object

class chariots.base.BaseNode(input_nodes: Optional[List[Union[str, BaseNode]]] = None, out-
put_nodes: Union[List[str], str] = None)

Bases: abc.ABC

A node represents a step in a Pipeline. It is linked to one or several inputs and can produce one or several
ouptuts:

>>> train_logistics = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.FIT_PREDICT), input_nodes=["x"], output_nodes="x_
→˓transformed"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

you can also link the first and/or the last node of your pipeline to the pipeline input and output:

>>> pred = Pipeline([
... Node(IrisFullDataSet(),input_nodes=['__pipeline_input__'], output_nodes=[
→˓"x"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes=['__pipeline_output__'])
...], 'pred')

Here we are showing the behavior of nodes using the Node subclass (used with ops).

If you want to create your own Node you will need to define the

• node_version property that gives the version of the node

• name property

• execute method that defines the execution behavior of your custom Node

• load_latest_version that defines how to load the latest version of this node

Parameters

• input_nodes – the input_nodes on which this node should be executed

• output_nodes – an optional symbolic name for the outputs of this node (to be used
by downstream nodes in the pipeline. If this node is the output of the pipeline use
__pipeline_output__ or ReservedNodes.pipeline_output. If the output of the node should
be split (for different downstream nodes to consume) use a list

check_version_compatibility(upstream_node: chariots.base._base_nodes.BaseNode,
store_to_look_in: chariots._op_store.OpStore)

checks that this node is compatible with a potentially new version of an upstream node‘

Parameters

• upstream_node – the upstream node to check for version compatibality with

16 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

• store_to_look_in – the op_store to look for valid relationships between this node
and upstream versions

Raises VersionError – when the two nodes are not compatible

abstract execute(*params)→ Any
executes the computation represented byt this node (loads/saves dataset for dataset nodes, executes under-
lyin op for Node

Parameters params – the inputs provided by the input_nodes

Returns the output(s) of the node

property is_loadable
whether or not this node can be loaded (this is used by pipelined to know which nodes to load

abstract load_latest_version(store_to_look_in: chariots._op_store.OpStore) → chari-
ots.base._base_nodes.BaseNode

reloads the latest available version of thid node by looking for all available versions in the OpStore

Parameters store_to_look_in – the store to look for new versions and eventually for bytes
of serialized ops

Returns this node once it has been loaded

abstract property name
the name of the node

abstract property node_version
the version of this node

property output_references
the different outputs of this nodes

persist(store: chariots._op_store.OpStore, downstream_nodes: Optional[List[BaseNode]])→ chari-
ots.versioning._version.Version

persists this nodes’s data (usually this means saving the serialized bytes of the inner op of this node (for
the Node class

Parameters

• store – the store in which to store the node

• downstream_nodes – the node(s) that are going to accept the current version of this
node as upstream

replace_symbolic_references(symbolic_to_real_node: Mapping[str, NodeReference]) →
chariots.base._base_nodes.BaseNode

replaces all the symbolic references of this node: if an input_node or output_node was defined with a string
by the user, it will try to find the node represented by this string.

Parameters symbolic_to_real_node – the mapping of all NodeReference found so far in
the pipeline

Raises ValueError – if a node with multiple outputs was used directly (object used rather
than strings)

Returns this node with all it’s inputs and outputs as NodeReferences rather than strings

property require_saver
whether or not this node requires a saver to be executed this is usualy True by data nodes

property requires_runner
whether or not this node requires a runner to be executed (typically if the inner op is a pipelines)

4.1. chariots.base 17

chariots Documentation, Release 0.2.4

4.2 chariots.callbacks

Callbacks are use to change the default behavior of an op or a pipeline in a reusable way, you can create callbacks to
log performance or timing check output distribution or what ever you need around the pipeline or the ops execution.

There are two main types of callbacks:

• operation callbacks that give ou entry points before and after the execution of this specific op

• pipeline callback that give you entry points before and after the execution of the pipeline and in between each
node

the order of execution of the callbacks are as follows:

• pipeline callbacks’ before_execution

• pipeline callbacks’ before_node_execution (for each node)

• op callbacks’ before_execution

• op’ before_execution method

• op’s execute method

• op’s after_execution method

• op callbacks’ after_execution

• pipeline callbacks’ after_node_execution

During the pipeline’s execution, the inputs and outputs of the execution are being provided (when applicable), these
are provided for information, DO NOT TRY TO MODIFY those (this is undefined behavior)

class chariots.callbacks.OpCallBack
Bases: object

an op callback is used to perform specific instructions at certain points around the operation’s execution

to create your own op callback, you need to override either the before_execution or the after_execution method
(or both)

>>> class PrintOpName(OpCallBack):
...
... def before_execution(self, op: "base.BaseOp", args: List[Any]):
... print('{} called with {}'.format(op.name, args))

>>> is_even_pipeline = Pipeline([
... Node(AddOneOp(), input_nodes=['__pipeline_input__'], output_nodes=
→˓'modified'),
... Node(IsOddOp(op_callbacks=[PrintOpName()]), input_nodes=['modified'],
... output_nodes=['__pipeline_output__'])
...], 'simple_pipeline')
>>> runner.run(is_even_pipeline, 3)
isoddop called with [4]
False

after_execution(op: chariots.base._base_op.BaseOp, args: List[Any], output: Any)
called after the operation has been executed (and after it’s after_execution’s method).

Parameters

• op – the operation that was executed

• args – the arguments that were passed to the op

18 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

• output – the output the op produced. DO NOT MODIFY the output reference as it might
cause some undefined behavior

before_execution(op: chariots.base._base_op.BaseOp, args: List[Any])
called before the operation is executed (and before the operation’s before_execution’s method).

Parameters

• op – the operation that is going to be executed

• args – the list of arguments that are going to be passed to the operation. DO NOT
MODIFY those references as this might cause some undefined behavior

class chariots.callbacks.PipelineCallback
Bases: object

a pipeline callback is used to define instructions that need to be executed at certain points in the pipeline execu-
tion:

• before the pipeline is ran

• before each node of the pipeline

• after each node of the pipeline

• after the pipeline is ran

to create your own, you need to overide one or more of the before_execution, after_execution, be-
fore_node_execution, after_node_execution methods:

>>> class MyPipelineLogger(PipelineCallback):
...
... def before_execution(self, pipeline: "chariots.Pipeline", args:
→˓List[Any]):
... print('running {}'.format(pipeline))
...
... def before_node_execution(self, pipeline: "chariots.Pipeline", node:
→˓"BaseNode", args: List[Any]):
... print('running {} for {}'.format(node.name, pipeline.name))

>>> is_even_pipeline = Pipeline([
... Node(AddOneOp(), input_nodes=['__pipeline_input__'], output_nodes=
→˓'modified'),
... Node(IsOddOp(), input_nodes=['modified'],
... output_nodes=['__pipeline_output__'])
...], 'simple_pipeline', pipeline_callbacks=[MyPipelineLogger()])
>>> runner.run(is_even_pipeline, 3)
running <OP simple_pipeline>
running addoneop for simple_pipeline
running isoddop for simple_pipeline
False

after_execution(pipeline: chariots._pipeline.Pipeline, args: List[Any], output: Any)
called after all the nodes of the pipeline have been ran with the pipeline being run and the output of the run

Parameters

• pipeline – the pipeline being run

• args – the pipeline input that as given at the beginning of the run

• output – the output of the pipeline run. DO NOT MODIFY those references as this
might cause some undefined behavior

4.2. chariots.callbacks 19

chariots Documentation, Release 0.2.4

after_node_execution(pipeline: chariots._pipeline.Pipeline, node: chari-
ots.base._base_nodes.BaseNode, args: List[Any], output: Any)

called after each node is executed. The pipeline the node is in as well as the node are provided alongside
the input/output of the node that ran

Parameters

• pipeline – the pipeline being run

• node – the node that is about to run

• args – the arguments that was given to the node

• output – the output the node produced. . DO NOT MODIFY those references as this
might cause some undefined behavior

before_execution(pipeline: chariots._pipeline.Pipeline, args: List[Any])
called before any node in the pipeline is ran. provides the pipeline that is being run and the pipeline input

Parameters

• pipeline – the pipeline being ran

• args – the pipeline inputs. DO NOT MODIFY those references as this might cause some
undefined behavior

before_node_execution(pipeline: chariots._pipeline.Pipeline, node: chari-
ots.base._base_nodes.BaseNode, args: List[Any])

called before each node is executed the pipeline the node is in as well as the node are provided alongside
the arguments the node is going to be given

Parameters

• pipeline – the pipeline being run

• node – the node that is about to run

• args – the arguments that are going to be given to the node. DO NOT MODIFY those
references as this might cause some undefined behavior

4.3 chariots.nodes

A node represents a step in a Pipeline. It is linked to one or several inputs and can produce one or several ouptuts:

>>> train_logistics = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.FIT_PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

you can also link the first and/or the last node of your pipeline to the pipeline input and output:

>>> pred = Pipeline([
... Node(IrisFullDataSet(),input_nodes=['__pipeline_input__'], output_nodes=["x
→˓"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_nodes=[
→˓'__pipeline_output__'])
...], 'pred')

20 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

class chariots.nodes.Node(op: chariots.base._base_op.BaseOp, input_nodes: Op-
tional[List[Union[str, chariots.base._base_nodes.BaseNode]]]
= None, output_nodes: Union[List[Union[str,
chariots.base._base_nodes.BaseNode]], str, chari-
ots.base._base_nodes.BaseNode] = None)

Bases: chariots.base._base_nodes.BaseNode

Class that handles the interaction between a pipeline and an Op. it handles defining the nodes that are going to
be used as the inputs of the op and how the output of the op should be reppresented for the rest of the pipeline.

>>> train_logistics = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.FIT_PREDICT), input_nodes=["x"], output_nodes="x_
→˓transformed"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

you can also link the first and/or the last node of your pipeline to the pipeline input and output:

>>> pred = Pipeline([
... Node(IrisFullDataSet(),input_nodes=['__pipeline_input__'], output_nodes=[
→˓"x"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes=['__pipeline_output__'])
...], 'pred')

Parameters

• op – the op this Node represents

• input_nodes – the input_nodes that are going to be used as inputs of the inner op the
node, the inputs will be given to the op in the order they are defined in this argument.

• output_nodes – a symbolic name for the the output(s) of the op, if the op returns a tuple
output_noes should be the same length as said tuple

check_version_compatibility(upstream_node: chariots.base._base_nodes.BaseNode,
store_to_look_in: chariots._op_store.OpStore)

checks that this node is compatible with a potentially new version of an upstream node‘

Parameters

• upstream_node – the upstream node to check for version compatibality with

• store_to_look_in – the op_store to look for valid relationships between this node
and upstream versions

Raises VersionError – when the two nodes are not compatible

execute(params: List[Any], runner: Optional[chariots.base._base_runner.BaseRunner] = None) →
Any

executes the underlying op on params

Parameters

• runner – runner that can be provided if the node needs one (mostly if node is a pipeline)

• params – the inputs of the underlying op

Raises ValueError – if the runner is not provided but needed

4.3. chariots.nodes 21

chariots Documentation, Release 0.2.4

Returns the output of the op

property is_loadable

Returns whether or not this node and its inner op can be loaded

load_latest_version(store_to_look_in: chariots._op_store.OpStore) → Op-
tional[chariots.base._base_nodes.BaseNode]

reloads the latest version of the op this node represents by looking for available versions in the store

Parameters store_to_look_in – the store to look for new versions in

Returns the reloaded node if any older versions where found in the store otherwise None

property name
the name of the node. by default this will be the name of the underlying op.

property node_version
the version of this node

persist(store: chariots._op_store.OpStore, downstream_nodes: Optional[List[BaseNode]]) → Op-
tional[chariots.versioning._version.Version]

persists this nodes’s data (usually this means saving the serialized bytes of the inner op of this node (for
the Node class

Parameters

• store – the store in which to store the node

• downstream_nodes – the node(s) that are going to accept the current version of this
node as upstream

property requires_runner
whether or not this node requires a runner to be executed (typically if the inner op is a pipelines)

class chariots.nodes.DataLoadingNode(serializer: chariots.base._base_serializer.BaseSerializer,
path: str, output_nodes=None, name:
Optional[str] = None, saver: Op-
tional[chariots.base._base_saver.BaseSaver] = None)

Bases: chariots.nodes._data_node.DataNode

a node for loading data from the ap’s saver (if used in an app, otherwise use the attach_save method to define
this node’s saver).

You can use this node like any other node except that it doesn’t take a input_nodes parameters

>>> load_and_analyse_iris = Pipeline([
... DataLoadingNode(serializer=CSVSerializer(), path='/train.csv', output_
→˓nodes=["train_df"]),
... Node(AnalyseDataSetOp(), input_nodes=["train_df"], output_nodes=["__
→˓pipeline_output__"]),
...], "analyse")

then you can prepare the pipeline (which attaches the saver) and run the pipeline

>>> load_and_analyse_iris.prepare(saver)
>>> runner.run(load_and_analyse_iris)
Counter({1: 39, 2: 38, 0: 35})

Parameters

• saver – the saver to use for loading or saving data (if not specified at init, you can use the
attach_saver method

22 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

• serializer – the serializer to use to load the dat

• path – the path to load the data from

• output_nodes – an optional symbolic name for the node to be called by other
node. If this node is the output of the pipeline use “pipeline_output” or Re-
servedNodes.pipeline_output

• name – the name of the op

execute(params: List[Any], runner: Optional[chariots.base._base_runner.BaseRunner] = None) →
Any

executes the computation represented byt this node (loads/saves dataset for dataset nodes, executes under-
lyin op for Node

Parameters params – the inputs provided by the input_nodes

Returns the output(s) of the node

property node_version
the version of this node

class chariots.nodes.DataSavingNode(serializer: chariots.base._base_serializer.BaseSerializer,
path: str, input_nodes: Optional[List[Union[AnyStr,
Node]]], name: Optional[str] = None, saver: Op-
tional[chariots.base._base_saver.BaseSaver] = None)

Bases: chariots.nodes._data_node.DataNode

a node for saving data into the app’s Saver (if used in an app, otherwise use the attach_save method to define
this node’s saver).

You can use this node like any other node except that it doesn’t take a input_nodes parameters

>>> save_train_test = Pipeline([
... Node(IrisDF(), output_nodes='df'),
... Node(TrainTestSplit(), input_nodes=['df'], output_nodes=['train_df',
→˓'test_df']),
... DataSavingNode(serializer=CSVSerializer(), path='/train.csv', input_
→˓nodes=['train_df']),
... DataSavingNode(serializer=DillSerializer(), path='/test.pkl', input_
→˓nodes=['test_df'])
...], "save")

you can then use the prepare method of the pipeline to attach a saver to our various DataNodes and run the
pipeline like any other

>>> save_train_test.prepare(saver)
>>> runner.run(save_train_test)

Parameters

• saver – the saver to use for loading or saving data (if not specified at init, you can use the
attach_saver method

• serializer – the serializer to use to load the dat

• path – the path to load the data from

• input_nodes – the data that needs to be saved

• name – the name of the op

4.3. chariots.nodes 23

chariots Documentation, Release 0.2.4

execute(params: List[Any], runner: Optional[chariots.base._base_runner.BaseRunner] = None) →
Any

executes the computation represented byt this node (loads/saves dataset for dataset nodes, executes under-
lyin op for Node

Parameters params – the inputs provided by the input_nodes

Returns the output(s) of the node

property node_version
the version of this node

class chariots.nodes.ReservedNodes
Bases: enum.Enum

enum of reserved node names

pipeline_input = '__pipeline_input__'

pipeline_output = '__pipeline_output__'

property reference
the output references of the reserved nodes

4.4 chariots.ops

operations are the atomic computation element of Chariots, you can use them to train models, preprocess your data,
extract features and much more.

to create your own operations, you will need to subclass one of the base op classes:

• create a minimalist operation by subclassing the BaseOp class

• create an op that supports loading and saving by subclassing the LoadableOp class

• create a machine learning operation by subclassing on of the machine learning ops (depending on your frame-
work) like an sklearn op

class chariots.ops.LoadableOp(op_callbacks: Optional[List[chariots.callbacks._op_callback.OpCallBack]]
= None)

Bases: chariots.base._base_op.BaseOp

an operation that supports loading and saving. This means that when a pipeline tries to load a node using this
kind of op, it will try to find the serialized bytes of the last saved version of this op and pass them to the load
method of the op.

Similarly when the pipeline will try to save a node using this kind of operation, it will get the op’s serialized
bytes by calling it’s serialize method (along with the op’s version)

to create your own loadable op, you will need to: - define the load and serialize method - define the execute
method as for a normal op to define the behavior of your op

execute(*args, **kwargs)
main method to override. it defines the behavior of the op. In the pipeline the argument of the pipeline will
be passed from the node with one argument per input (in the order of the input nodes)

load(serialized_object: bytes)
Receives serialize bytes of a newer version of this class and sets the internals of he op accordingly.

Parameters serialized_object – the serialized bytes of this op (as where outputed by the
serialize method

24 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

serialize()→ bytes
serializes the object into bytes (to be persisted with a Saver) to be reloaded in the future (you must ensure
the compatibility with the load method

Returns the serialized bytes representing this operation

4.5 chariots.runners

runners are used to execute Pipelines: they define in what order and how each node of the pipeline should be executed.

For the moment Chariots only provides a basic sequential runner that executes each operation of a pipeline one after
the other in a single threat however we have plans to introduce new runners (process and thread based ones as well as
some cluster computing one) in future releases.

You can use runners directly if you want to execute your pipeline manually:

>>> runner = SequentialRunner()
>>> runner.run(is_odd_pipeline, 5)
True

or you can set the default runner of your app and it will be used every time a pipeline execution is called:

>>> my_app = Chariots(app_pipelines=[is_odd_pipeline], runner=SequentialRunner(),
→˓path=app_path,
... import_name="my_app")

class chariots.runners.SequentialRunner
Bases: chariots.base._base_runner.BaseRunner

runner that executes every node in a pipeline sequentially in a single thread.

run(pipeline: chariots._pipeline.Pipeline, pipeline_input: Optional[Any] = None)
runs a pipeline, provides it with the correct input and extracts the results if any

Parameters

• pipeline – the pipeline to run

• pipeline_input – the input to be given to the pipeline

Returns the output of the graph called on the input if applicable

4.6 chariots.savers

savers are used to persist and retrieve information about ops, nodes and pipeline (such as versions, persisted versions,
datasets, and so on).

A saver can be viewed as the basic abstraction of a file system (interprets path) and always has a root path (that
represents the path after which the saver will start persisting data).

For now chariots only provides a basic FileSaver saver but there are plans to add more in future releases (in particular
to support bottomless cloud storage solutions such as aws s3 and Google cloud storage).

to create your own saver, you can subclass the BaseSaver class

To use a specific saver in your app, you will need to specify the saver class and the root path of the saver in the Chariots
initialisation:

4.5. chariots.runners 25

chariots Documentation, Release 0.2.4

>>> my_app = Chariots(app_pipelines=my_pipelines, path=app_path, saver_cls=FileSaver,
→˓import_name="my_app")

class chariots.savers.FileSaver(root_path: str)
Bases: chariots.base._base_saver.BaseSaver

a saver that persists to the local file system of the machine the Chariots saver is running on.

load(path: str)→ bytes
loads the bytes serialized at a specific path

Parameters path – the path to load the bytes from.You should not include the root_path of the
saver in this path: loading to /foo/bar.txt on a saver with /my/root/path as root path will load
/my/root/path/foo/bar.txt

Returns saved bytes

save(serialized_object: bytes, path: str)→ bool
saves bytes to a specific path.

Parameters

• serialized_object – the bytes to persist

• path – the path to save the bytes to. You should not include the root_path of the saver in
this path: saving to /foo/bar.txt on a saver with /my/root/path as root path will create/update
/my/root/path/foo/bar.txt

Returns whether or not the object was correctly serialized.

4.7 chariots.serializers

Serializers are utils classes that are used throughout the Chariots framework to transform objects into bytes. there are
for instance used to serialize the inner models of the machine learning ops:

>>> class LinearRegression(SKSupervisedOp):
...
... serializer_cls = MySerializerCls
...
... model_class = PCA

there are also usually used in the saving nodes to choose the serialization method for your datasets:

>>> saving_node = DataSavingNode(serializer=CSVSerializer(), path='my_path.csv',
→˓input_nodes=["my_dataset"])

class chariots.serializers.DillSerializer
Bases: chariots.base._base_serializer.BaseSerializer

serializes objects using the dill library (similar to pickle but optimized for numpy arrays.

deserialize_object(serialized_object: bytes)→ Any
returns the deserialized object from serialized bytes (that will be loaded from a saver)

Parameters serialized_object – the serialized bytes

Returns the deserialized objects

26 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

serialize_object(target: Any)→ bytes
serializes the object into bytes (for ml ops target will be the model itself and not the op, for the data ops
the target will be the input of the node)

Parameters target – the object that will be serialized

Returns the bytes of the serialized object

class chariots.serializers.JSONSerializer
Bases: chariots.base._base_serializer.BaseSerializer

serializes objects into JSON format

deserialize_object(serialized_object: bytes)→ Any
returns the deserialized object from serialized bytes (that will be loaded from a saver)

Parameters serialized_object – the serialized bytes

Returns the deserialized objects

serialize_object(target: Any)→ bytes
serializes the object into bytes (for ml ops target will be the model itself and not the op, for the data ops
the target will be the input of the node)

Parameters target – the object that will be serialized

Returns the bytes of the serialized object

class chariots.serializers.CSVSerializer
Bases: chariots.base._base_serializer.BaseSerializer

A serializer to save a pandas data frame.

Raises Typeerror – if the node receives something other than a pandas DataFrame

deserialize_object(serialized_object: bytes)→ pandas.core.frame.DataFrame
returns the deserialized object from serialized bytes (that will be loaded from a saver)

Parameters serialized_object – the serialized bytes

Returns the deserialized objects

serialize_object(target: pandas.core.frame.DataFrame)→ bytes
serializes the object into bytes (for ml ops target will be the model itself and not the op, for the data ops
the target will be the input of the node)

Parameters target – the object that will be serialized

Returns the bytes of the serialized object

4.8 chariots.sklearn

the sklearn module provides support for the scikit-learn framework.

this module provides two main classes (SKSupervisedOp, SKUnsupervisedOp) that need to be subclassed to be used.
to do so you will need to set the model_class class attribute and potentially the model_parameters class attribute. this
should be a VersionedFieldDict which defines the parameters your model should be initialized with. As for other
machine learning ops, you can override the training_update_version class attribute to define which version will be
changed when the operation is retrained:

4.8. chariots.sklearn 27

chariots Documentation, Release 0.2.4

>>> class PCAOp(SKUnsupervisedOp):
... training_update_version = VersionType.MAJOR
... model_parameters = VersionedFieldDict(VersionType.MAJOR, {"n_components": 2,})
... model_class = VersionedField(PCA, VersionType.MAJOR)

Once your op class is define, you can use it as any MLOp choosing your MLMode to define the behavior of your
operation (fit and/or predict):

>>> train_pca = Pipeline([Node(IrisXDataSet(), output_nodes=["x"]), Node(PCAOp(MLMode.
→˓FIT), input_nodes=["x"])],
... 'train_pca')

class chariots.sklearn.SKSupervisedOp(mode: chariots._ml_mode.MLMode,
op_callbacks: Op-
tional[List[chariots.callbacks._op_callback.OpCallBack]]
= None)

Bases: chariots.sklearn._base_sk_op.BaseSKOp

Op base class to create supervised models using the scikit learn framework., If using the MLMode.FIT or
MLMode.FIT_PREDICT, you will need to link this op to a X and a y upstream node:

>>> train_logistics = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

and if you are using the op with the MLMode.PREDICT mode you will only need to link the op to an X upstream
node:

>>> pred = Pipeline([
... Node(IrisFullDataSet(),input_nodes=['__pipeline_input__'], output_nodes=[
→˓"x"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes=['__pipeline_output__'])
...], 'pred')

fit(X, y)
method used by the operation to fit the underlying model

DO NOT TRY TO OVERRIDE THIS METHOD.

Parameters

• X – the input that the underlying supervised model will fit on (type must be compatible
with the sklearn lib such as numpy arrays or pandas data frames)

• y – the output that hte underlying supervised model will fit on (type must be compatible
with the sklearn lib such as numpy arrays or pandas data frames)

predict(X)→ Any
method used internally by the op to predict with the underlying model.

DO NOT TRY TO OVERRIDE THIS METHOD.

Parameters X – the input the model has to predict on. (type must be compatible with the sklearn
lib such as numpy arrays or pandas data frames)

28 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

class chariots.sklearn.SKUnsupervisedOp(mode: chariots._ml_mode.MLMode,
op_callbacks: Op-
tional[List[chariots.callbacks._op_callback.OpCallBack]]
= None)

Bases: chariots.sklearn._base_sk_op.BaseSKOp

base class to create unsupervised models using the scikit-learn framework. Whatever the mode you will need to
link this op with a single upstream node:

>>> train_logistics = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

>>> pred = Pipeline([
... Node(IrisFullDataSet(),input_nodes=['__pipeline_input__'], output_nodes=[
→˓"x"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes=['__pipeline_output__'])
...], 'pred')

fit(X)
method used to fit the underlying unsupervised model.

DO NOT TRY TO OVERRIDE THIS METHOD.

Parameters X – the dataset (compatible type with the sklearn lib as pandas data-frames or
numpy arrays).

predict(X)→ Any
transforms the dataset using the underlying unsupervised model

DO NOT TRY TO OVERRIDE THIS METHOD.

Parameters X – the dataset to transform (type must be compatible with the sklearn library such
as pandas data frames or numpy arrays).

4.9 chariots.keras

class chariots.keras.KerasOp(mode: chariots._ml_mode.MLMode, verbose: Optional[int] = 1)
Bases: chariots.base._base_ml_op.BaseMLOp

Keras Ops help you create ops for all your Keras based neural networks.

To create your keras op, you will need to:

• define the initialisation behavior of your model by overriding the _init_model method.

• define any additional training parameters using the fit_params VersionedFieldDict.

>>> from chariots import Pipeline, MLMode
>>> from chariots.keras import KerasOp
>>> from chariots.nodes import Node
>>> from chariots.versioning import VersionType, VersionedFieldDict
>>> from keras import models, layers

(continues on next page)

4.9. chariots.keras 29

chariots Documentation, Release 0.2.4

(continued from previous page)

...

...
>>> class KerasLinear(KerasOp):
... fit_params = VersionedFieldDict(VersionType.MAJOR, {
... 'epochs': 3,
... 'batch_size': 32,
... })
...
... def _init_model(self, *input_data_sets):
... model = models.Sequential([layers.Dense(3, activation='softmax',
→˓input_shape=(4,))])
... model.compile(loss='categorical_crossentropy', optimizer='adam')
... return model
...
...
>>> train = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["X", "y"]),
... Node(Categorize(), input_nodes=['y'], output_nodes='y_cat'),
... Node(KerasLinear(mode=MLMode.FIT, verbose=0), input_nodes=['X', 'y_cat'])
...], 'train')
>>> pred = Pipeline([
... Node(KerasLinear(mode=MLMode.PREDICT), input_nodes=['__pipeline_input__'],
... output_nodes='__pipeline_output__')
...], 'pred')

than you can call your pipeline as you would with any other:

>>> runner.run(train)
...
>>> runner.run(pred, np.array([[1, 2, 3, 4]]))
array([[...]], dtype=float32)

or use them in an app:

>>> app = Chariots([train, pred], app_path, import_name='my_app')

fit(input_data_sets: Union[List[numpy.ndarray], numpy.ndarray], output_datasets:
Union[List[numpy.ndarray], numpy.ndarray])
fits the inner model of the op on data (in args and kwargs) this method must not return any data (use the
FIT_PREDICT mode to predict on the same data the op was trained on)

input_params = <chariots.versioning._versioned_field_dict.VersionedFieldDict object>

predict(input_datasets)→ Any
the method used to do predictions/inference once the model has been fitted/loaded

4.10 chariots.versioning

The versioning module provides all the types the Chariot’s versioning logic is built around. If you want to know more
about the way semantic versioning is handled in Chariots, you can go check out the guiding principles.

This module is built around the VersionableMeta metaclass. This is a very simple metaclas that adds the __version__
class attribute whenever a new versionable class is created:

30 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

>>> class MyVersionedClass(metaclass=VersionableMeta):
... pass
>>> MyVersionedClass.__version__
<Version, major:da39a, minor: da39a, patch: da39a>

to control the version of your class, you can use VersionedField descriptors:

..doctest:

>>> class MyVersionedClass(metaclass=VersionableMeta):
... foo = VersionedField(3, VersionType.MINOR)
>>> MyVersionedClass.__version__
<Version, major:94e72, minor: 36d3c, patch: 94e72>
>>> MyVersionedClass.foo
3

and if in a future version of your code, the class attribute changes, the subsequent version will be changed:

..doctest:

>>> class MyVersionedClass(metaclass=VersionableMeta):
... foo = VersionedField(5, VersionType.MINOR)
>>> MyVersionedClass.__version__
<Version, major:94e72, minor: 72101, patch: 94e72>
>>> MyVersionedClass.foo
5

but this version change only happen when the class is created and not when you change the value of this class attribute
during the lifetime of your class:

>>> MyVersionedClass.foo = 7
>>> MyVersionedClass.__version__
<Version, major:94e72, minor: 72101, patch: 94e72>
>>> MyVersionedClass.foo
7

This module also provides a helper for creating versioned dict (where each value of the dict acts as a VersionedField)
with the VersionedFieldDict descriptors:

>>> class MyVersionedClass(metaclass=VersionableMeta):
... versioned_dict = VersionedFieldDict(VersionType.PATCH,{
... 'foo': 1,
... 'bar': 2,
... 'blu': VersionedField(3, VersionType.MAJOR)
... })
>>> MyVersionedClass.__version__
<Version, major:ddf7a, minor: 1b365, patch: 68722>
>>> MyVersionedClass.versioned_dict['foo']
1
>>> class MyVersionedClass(metaclass=VersionableMeta):
... versioned_dict = VersionedFieldDict(VersionType.PATCH,{
... 'foo': 10,
... 'bar': 2,
... 'blu': VersionedField(3, VersionType.MAJOR)
... })
>>> MyVersionedClass.__version__
<Version, major:ddf7a, minor: 1b365, patch: 18615>
>>> MyVersionedClass.versioned_dict['foo']

(continues on next page)

4.10. chariots.versioning 31

chariots Documentation, Release 0.2.4

(continued from previous page)

10
>>> class MyVersionedClass(metaclass=VersionableMeta):
... versioned_dict = VersionedFieldDict(VersionType.PATCH,{
... 'foo': 1,
... 'bar': 2,
... 'blu': VersionedField(10, VersionType.MAJOR)
... })
>>> MyVersionedClass.__version__
<Version, major:d5abf, minor: 1b365, patch: 68722>
>>> MyVersionedClass.versioned_dict['blu']
10

this is for instance used for the model_parameters attribute of the sci-kit learn ops

class chariots.versioning.Version(major: Union[_hashlib.HASH, str, None] = None, mi-
nor: Union[_hashlib.HASH, str, None] = None, patch:
Union[_hashlib.HASH, str, None] = None, creation_time:
Optional[float] = None)

Bases: object

Type of all the different versions used throughout the Chariots framework.

A Chariots version has three subversions (major, minor, patch) each subversion is the hexadecimal representation
of the VersionedFields of this version.

two versions are considered equal if all their subversions are the same. A version is considered greater than the
other of the other if one or more of it’s subversions is different and it has been created later.

you can use the + operation between two version to create a new version. this new version will NOT be the same
as creating the new version from the same VersionedFields as the two versions: version(foo) + version(bar) !=
version(foo, bar)

property creation_time
the time stamp of the creation time of the version

property major
the hash of the major subversion

property minor
the hash of the minor subversion

classmethod parse(version_string: str)→ chariots.versioning._version.Version
parses a string representation of a saved version and returns a valid Version object

Parameters version_string – the version string to parse (this must come from
str(my_version) and not repr(my_version)

Returns the version represented by the version string

property patch
the hash of the patch subversion

update(version_type: chariots.versioning._version_type.VersionType, input_bytes: bytes) → chari-
ots.versioning._version.Version

updates the corresponding subversion of this version with some bytes

Parameters

• version_type – the subversion to update

• input_bytes – the bytes to update the subversion with

32 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

Returns the updated version

update_major(input_bytes: bytes)→ chariots.versioning._version.Version
updates the major subversion with some bytes

Parameters input_bytes – bytes to update the major subversion with

Returns the updated version

update_minor(input_bytes: bytes)→ chariots.versioning._version.Version
updates the minor subversion with some bytes

Parameters input_bytes – bytes to update the minor subversion with

Returns the updated version

update_patch(input_bytes: bytes)→ chariots.versioning._version.Version
updates the patch subversion with some bytes

Parameters input_bytes – bytes to update the patch subversion with

Returns the updated version

class chariots.versioning.VersionType
Bases: enum.Enum

am enum to give the three subversion types used in the chariots framework

MAJOR = 'major'

MINOR = 'minor'

PATCH = 'patch'

class chariots.versioning.VersionedField(value: Any, affected_version: chari-
ots.versioning._version_type.VersionType)

Bases: object

a descriptor to mark that a certain class attribute has to be incorporated in a subversion a versioned field is used
as a normal class attribute (when gotten it returns the inner value) but is used to generate the version of the class
it is used on when said class is created (at import time)

>>> class MyVersionedClass(metaclass=VersionableMeta):
... foo = VersionedField(3, VersionType.MINOR)
>>> MyVersionedClass.foo
3

Parameters

• value – the inner value to be given the field whcih will be returned when you try to get the
class attribute

• affected_version – the subversion this class attribute has to affect

class chariots.versioning.VersionedFieldDict(default_version=<VersionType.MAJOR:
’major’>, *args, **kwargs)

Bases: collections.abc.MutableMapping

a versioned field dict acts as a normal dictionary but the values as interpreted as versioned fields when it is a
VersionedClass class attribute

property version_dict
property to retrieve the name of the fields and the Versions associated to each of them :return: the mapping
with the key and the version of the value

4.10. chariots.versioning 33

chariots Documentation, Release 0.2.4

class chariots.versioning.VersionableMeta(clsname, superclasses, attributedict)
Bases: type

metaclass for all versioned objects in the library. When a new class using this metaclas is created, it will have a
__version__ class attribute that sets all the subversions of the class depending on the VersionedFields the class
was created with

4.11 chariots.cli

Console script for chariots.

4.12 chariots.errors

exception chariots.errors.BackendError
Bases: ImportError

exception chariots.errors.VersionError
Bases: TypeError

static handle()

class chariots.Pipeline(pipeline_nodes: List[base.BaseNode], name: str, pipeline_callbacks:
Optional[List[chariots.callbacks._pipeline_callback.PipelineCallback]] =
None)

a pipeline is a collection of linked nodes that have to be executed one on top of each other. pipelines are the
main way to use Chariots.

to build a simple pipeline you can do as such:

>>> pipeline = Pipeline([
... Node(AddOneOp(), input_nodes=["__pipeline_input__"], output_nodes=["added_
→˓number"]),
... Node(IsOddOp(), input_nodes=["added_number"], output_nodes=["__pipeline_
→˓output__"])
...], "simple_pipeline")

here we have just created a very simple pipeline with two nodes, one that adds one to the provided number and
one that returns whether or not the resulting number is odd

to use our pipeline, we can either do it manually with a runner:

>>> from chariots.runners import SequentialRunner
>>> runner = SequentialRunner()
>>> runner.run(pipeline=pipeline, pipeline_input=4)
True

you can also as easily deploy your pipeline to a Chariots app (small micro-service to run your pipeline)

>>> from chariots import Chariots
>>> app = Chariots([pipeline], path=app_path, import_name="simple_app")

Once this is done you can deploy your app as a flask app and get the result of the pipeline using a client:

>>> client.call_pipeline(pipeline, 4)
True

34 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

Parameters

• pipeline_nodes – the nodes of the pipeline. each node has to be linked to previous
node (or __pipeline_input__). nodes can create branches but the only output remaining has
to be __pipeline_output__ (or no ouptut)

• name – the name of the pipeline. this will be used to create the route at which to query the
pipeline in the Chariots app

• pipeline_callbacks – callbacks to be used with this pipeline (monitoring and logging
for instance)

execute(runner: chariots.base._base_runner.BaseRunner, pipeline_input=None)
present for inheritance purposes from the Op Class, this will automatically raise

execute_node(node: chariots.base._base_nodes.BaseNode, intermediate_results:
Dict[NodeReference, Any], runner: chariots.base._base_runner.BaseRunner)

executes a node from the pipeline, this method is called by the runners to make the pipeline execute one of
it’s node and all necessary callbacks

Parameters

• node – the node to be executed

• intermediate_results – the intermediate result to look in in order to fin the node’s
inputs

• runner – a runner to be used in case the node needs a runner to be executed (internal
pipeline)

Raises ValueError – if the output of the node does not correspond to the length of it’s output
references

Returns the final result of the node after the execution

static extract_results(results: Dict[chariots.base._base_nodes.NodeReference, Any]) →
Any

extracts the output of a pipeline once all the nodes have been computed. This method is used by runners
when once all the nodes are computed in order to check and get the final result to return

Parameters results – the outputs left unused once the graph has been ran.

Raises ValueError – if some output was unused once every node is computed and the re-
maining is not the output of the pipeline

Returns the final result of the pipeline as needs to be returned to the use

get_pipeline_versions() → Mapping[chariots.base._base_nodes.BaseNode, chari-
ots.versioning._version.Version]

returns the versions of every op in the pipeline

Returns the mapping version for node

load(op_store: chariots._op_store.OpStore)
loads all the latest versions of the nodes in the pipeline if they are compatible from an OpStore. if the latest
version is not compatible, it will raise a VersionError

Parameters op_store – the op store to look for existing versions if any and to load the bytes
of said version if possible

Raises VersionError – if a node is incompatible with one of it’s input. For instance if a
node has not been trained on the latest version of it’s input in an inference pipeline

Returns this pipeline once it has been fully loaded

4.12. chariots.errors 35

chariots Documentation, Release 0.2.4

property name
the name of the pipeline

property node_for_name
utils mapping that has node names in input and the nodes objects in values

property nodes
the nodes of the pipeline

prepare(saver: chariots.base._base_saver.BaseSaver)
prepares the pipeline to be served. This is manly used to attach the correct saver to the nodes that need one
(data saving and loading nodes for instance).

Parameters saver – the saver to attach to all the nodes that need one

save(op_store: chariots._op_store.OpStore)
persists all the nodes (that need saving) in an OpStore. this is used for instance when a training pipeline has
been executed and needs to save it’s trained node(s) for the inference pipeline to load them. This method
also updates the versions available for the store to serve in the future

Parameters op_store – the store to persist the nodes and their versions in

class chariots.Chariots(app_pipelines: List[chariots._pipeline.Pipeline], path,
saver_cls: Type[chariots.base._base_saver.BaseSaver]
= <class ’chariots.savers._file_saver.FileSaver’>, run-
ner: Optional[chariots.base._base_runner.BaseRunner]
= None, default_pipeline_callbacks: Op-
tional[List[chariots.callbacks._pipeline_callback.PipelineCallback]]
= None, *args, **kwargs)

small Flask application used to rapidly deploy pipelines:

>>> my_app = Chariots(app_pipelines=[is_odd_pipeline], path=app_path, import_name=
→˓"my_app")

you can then deploy the app as you would with the flask comand:

$ flask

or if you have used the chariots’ template, you can use the predefined cli once the project is installed:

$ my_great_project start

once the app is started you can use it with the client (that handles creating the requests and serializing to the
right format) to query your pipelines:

>>> client.call_pipeline(is_odd_pipeline, 4)
False

alternatively, you can query the Chariots server directly as you would for any normal micro-service. The server
has the following routes:

• /pipelines/<pipeline_name>/main

• /pipelines/<pipeline_name>/versions

• /pipelines/<pipeline_name>/load

• /pipelines/<pipeline_name>/save

• /pipelines/<pipeline_name>/health_check

for each pipeline that was registered to the Chariots app. It also creates some common routes for all pipelines:

36 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

• /health_check

• /available_pipelines

Parameters

• app_pipelines – the pipelines this app will serve

• path – the path to mount the app on (whether on local or remote saver). for isntance using
a LocalFileSaver and ‘/chariots’ will mean all the information persisted by the Chariots
server (past versions, trained models, datasets) will be persisted there

• saver_cls – the saver class to use. if None the FileSaver class will be used as default

• runner – the runner to use to run the pipelines. If None the SequentialRunner will be used
as default

• default_pipeline_callbacks – pipeline callbacks to be added to every pipeline
this app will serve.

• args – additional positional arguments to be passed to the Flask app

• kwargs – additional keywords arguments to be added to the Flask app

class chariots.Client(backend_url: str = ’http://127.0.0.1:5000’)
Client to query/save/load the pipelines served by a (remote) Chariots app.

for instance if you have built your app as such and deployed it:

>>> train_pca = Pipeline([Node(IrisXDataSet(), output_nodes=["x"]),
→˓Node(PCAOp(mode=MLMode.FIT),
... input_nodes=["x"])], "train_pca")

>>> train_logistic = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])
...], 'train_logistics')

>>> pred = Pipeline([
... Node(PCAOp(MLMode.PREDICT), input_nodes=["__pipeline_input__"], output_
→˓nodes="x_transformed"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_
→˓nodes="__pipeline_output__")
...], "pred")

>>> app = Chariots([train_pca, train_logistic, pred], app_path, import_name="iris_
→˓app")

you can then train save and load your pipelines remotely from the client

>>> client.call_pipeline(train_pca)
>>> client.save_pipeline(train_pca)
>>> client.load_pipeline(train_logistic)
>>> client.call_pipeline(train_logistic)
>>> client.save_pipeline(train_logistic)
>>> client.load_pipeline(pred)
>>> client.call_pipeline(pred, [[1, 2, 3, 4]])
[1]

4.12. chariots.errors 37

chariots Documentation, Release 0.2.4

but if you execute them in the wrong order the client will propagate the errors that occur on the Chariots server

>>> client.call_pipeline(train_pca)
>>> client.save_pipeline(train_pca)
>>> client.load_pipeline(pred)
Traceback (most recent call last):
...
chariots.errors.VersionError: the pipeline you requested cannot be loaded because
→˓of version incompatibilityHINT: retrain and save/reload in order to have a
→˓loadable version

this example is overkill as you can use MLMode.FitPredict flag (not used here to demonstrate the situations
where VersionError will be raised). this would reduce the amount of saving/loading to get to the prediction.

call_pipeline(pipeline: chariots._pipeline.Pipeline, pipeline_input: Optional[Any] = None) →
Any

sends a request to the Chariots server in order to get this pipeline executed remotely on the server.

>>> client.call_pipeline(is_odd_pipeline, 4)
False
>>> client.call_pipeline(is_odd_pipeline, 5)
True

here you can get the user gets the output of the pipeline that got executed in our Chariots micro service

Parameters

• pipeline – the pipeline that needs to be executed in the remote Chariots server

• pipeline_input – the input of the pipeline (will be provided to the node with
__pipeline__input__ in it’s input_nodes). If none of the nodes accept a __pipeline_input__
and this is provided the execution of the pipeline will fail. pipeline_input needs to be JSON
serializable

Raises

• ValueError – if the pipeline requested is not present in the Chariots app.

• ValueError – if the execution of the pipeline fails

Returns the result of the pipeline. it needs to be JSON serializable for chariots to be able to pass
it through http

is_pipeline_loaded(pipeline: chariots._pipeline.Pipeline)→ bool
checks whether or not the pipeline has been loaded

Parameters pipeline – the pipeline to check

load_pipeline(pipeline: chariots._pipeline.Pipeline)
reloads all the nodes in a pipeline. this is usually used to load the updates of a node/model in the infer-
ence pipeline after the training pipeline(s) have been executed. If the latest version of a saved node is
incompatible with the rest of the pipeline, this will raise a VersionError

Parameters pipeline – the pipeline to reload

Raises VersionError – If there is a version incompatibility between one of the nodes in the
pipeline and one of it’s inputs

pipeline_versions(pipeline: chariots._pipeline.Pipeline) → Mapping[str, chari-
ots.versioning._version.Version]

gets all the versions of the nodes of the pipeline (different from pipeline.get_pipeline_versions as the client
will return the version of the loaded/trained version on the (remote) Chariots server)

38 Chapter 4. Api Docs

chariots Documentation, Release 0.2.4

Parameters pipeline – the pipeline to get the versions for

Returns mapping with the node names in keys and the version object in value

save_pipeline(pipeline: chariots._pipeline.Pipeline)
persists the state of the pipeline on the remote Chariots server (usually used for saving the nodes that were
trained in a train pipeline in order to load them inside the inference pipelines).

Parameters pipeline – the pipeline to save on the remote server. Beware: any changes made
to the pipeline param will not be persisted (Only changes made on the remote version of the
pipeline)

class chariots.TestClient(app: chariots._deployment.app.Chariots)
mock up of the client to test a full app without having to create a server

class chariots.OpStore(saver: chariots.base._base_saver.BaseSaver)
Bases: object

A Chariots OpStore handles the persisting of Ops and their versions as well as the accepted versions
of each op’s inputs.

the OpStore persists all this metadata about persisted ops in the /_meta.json file using the saver provided at init

all the serialized ops are saved at /models/<op name>/<version>

The OpStore is mostly used by the Pipelines and the nodes at saving time to:

• persist the ops that they have updated

• register new versions

• register links between different ops and different versions that are valid (for instance this versions
of the PCA is valid for this new version of the RandomForest

and at loading time to:

• check latest available version of an op

• check if this version is valid with the rest of the pipeline

• recover the bytes of the latest version if it is valid

the OpStore identifies op’s by there name (usually a snake case of the Class of your op) so changing
this name (or changing the class name) might make it hard to recover the metadata and serialized
bytes of the Ops

param saver the saver the op_store will use to retrieve it’s metadata and subsequent ops

get_all_versions_of_op(op: chariots.base._base_op.BaseOp) → Op-
tional[List[chariots.versioning._version.Version]]

returns all the available versions of an op ever persisted in the OpGraph (or any Opgraph using the same
_meta.json)

Parameters op – the op to get the previous persisted versions

get_op_bytes_for_version(op: chariots.base._base_op.BaseOp, version: chari-
ots.versioning._version.Version)→ bytes

loads the persisted bytes of op for a specific version

Parameters

• op – the op that needs to be loaded

• version – the version of the op to load

Returns the bytes of the op

4.12. chariots.errors 39

chariots Documentation, Release 0.2.4

get_validated_links(downstream_op_name: str, upstream_op_name: str) → Op-
tional[Set[chariots.versioning._version.Version]]

register_valid_link(downstream_op: Optional[str], upstream_op: str, upstream_op_version:
chariots.versioning._version.Version)

registers a link between an upstream and a downstream op. This means that in future relaods the down-
stream op will whitelist this version for this upstream op

Parameters

• downstream_op – the op that needs to whitelist one of it’s inputs’ new version

• upstream_op – the op that is getting whitelisted as one of the inputs of the downstream
op

• upstream_op_version – the valid version of the op that is getting whitelisted

Returns

save()
persists all the metadata about ops and versions available in the store using the store’s saver.

The saved metadata can be found at /_meta.json from the saver’s route.

save_op_bytes(op_to_save: chariots.base._base_op.BaseOp, version: chari-
ots.versioning._version.Version, op_bytes: bytes)

saves op_bytes of a specific op to the path /models/<op name>/<version>.

the version that is used here is the node version (and not the op_version) as nodes might be able to modify
some behaviors of the versioning of their underlying op

Parameters

• op_to_save – the op that needs to be saved (this will not be saved as is - only the bytes)

• version – the exact version to be used when persisting

• op_bytes – the bytes of the op to save that will be persisted

class chariots.MLMode
Bases: enum.Enum

mode in which to put the op (prediction of training) enum

FIT = 'fit'

FIT_PREDICT = 'fit_predict'

PREDICT = 'predict'

40 Chapter 4. Api Docs

CHAPTER

FIVE

CHARIOTS TEMPLATE

chariots provides a template to create Chariot templates that take care of the boilerplate involved. This template is in-
spired by the DataScience audreyr/cookiecutter-pypackage and drivendata/cookiecutter-data-science project templates
so you may find some similarities

to create a new project, just use

$ chariots new

you can then follow the prompts to customize your template (if you don’t know what to put, follow the defaults). If
you want a minimalist example (using the classic iris dataset), you can put y‘in the ‘use_iris_example parameter.

5.1 File Structure

the file structure of the project is as follows:

.
AUTHORS.rst
LICENSE
MANIFEST.in
Makefile
README.rst
docs

Makefile
authors.rst
conf.py
index.rst
installation.rst
make.bat
modules.rst

iris
__init__.py
app.py
cli.py
ops

__init__.py
data_ops

__init__.py
feature_ops

__init__.py
model_ops

__init__.py
pipelines

(continues on next page)

41

https://github.com/audreyr/cookiecutter-pypac
https://github.com/drivendata/cookiecutter-data-science

chariots Documentation, Release 0.2.4

(continued from previous page)

__init__.py
iris_local

data
ops

notebooks
example_notebook.ipynb

requirements.txt
requirements_dev.txt
setup.cfg
setup.py
tests

test_server.py`

the iris folder (it will take the name of your project) is the main module of the project. It contains three main parts:

• the ops module contains all your Chariot ops. this is where most of the models/preprocessing goes (in their
specific subfolders)

• the pipelines module defines the different pipelines of your project

• the app module provides the Chariots app that you can use to deploy your pipeline

the iris_local folder is where the chariots app will be mounted on (to load and save data/models) by default

the notebooks folder is where you can put you exploration and reporting notebooks

5.2 tools

the template provides several tools in order to facilitate development:

a cli interface that include

$ my_great_project start

to start the server

a makefile to build the doc, clean the project and more

and more to come. . . -

42 Chapter 5. Chariots template

CHAPTER

SIX

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/aredier/chariots/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

6.1.4 Write Documentation

chariots could always use more documentation, whether as part of the official chariots docs, in docstrings, or even on
the web in blog posts, articles, and such.

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/aredier/chariots/issues.

If you are proposing a feature:

43

https://github.com/aredier/chariots/issues
https://github.com/aredier/chariots/issues

chariots Documentation, Release 0.2.4

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up chariots for local development.

1. Fork the chariots repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/chariots.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv chariots
$ cd chariots/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 chariots tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/aredier/
chariots/pull_requests and make sure that the tests pass for all supported Python versions.

44 Chapter 6. Contributing

https://travis-ci.org/aredier/chariots/pull_requests
https://travis-ci.org/aredier/chariots/pull_requests

chariots Documentation, Release 0.2.4

6.4 Tips

To run a subset of tests:

$ py.test tests.test_chariots

6.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

6.4. Tips 45

chariots Documentation, Release 0.2.4

46 Chapter 6. Contributing

CHAPTER

SEVEN

CREDITS

7.1 Development Lead

• Antoine Redier <antoine.redier2@gmail.com>

7.2 Contributors

None yet. Why not be the first?

47

mailto:antoine.redier2@gmail.com

chariots Documentation, Release 0.2.4

48 Chapter 7. Credits

CHAPTER

EIGHT

HISTORY

8.1 0.1.0 (2019-06-15)

• First release on PyPI.

8.2 0.2.0 (2019-06-15)

• sci-kit learn and keras integration

• multiple outputs per nodes

• project template

• tutorials

49

chariots Documentation, Release 0.2.4

50 Chapter 8. History

CHAPTER

NINE

CHARIOTS

chariots aims to be a complete framework to build and deploy versioned machine learning pipelines.

• Documentation: https://chariots.readthedocs.io.

9.1 Getting Started: 30 seconds to Chariots:

You can check the documentation for a complete tutorial on getting started with chariots, but here are the essentials:

you can create operations to execute steps in your pipeline:

>>> from chariots.sklearn import SKUnsupervisedOp, SKSupervisedOp
>>> from chariots.versioning import VersionType, VersionedFieldDict, VersionedField
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear_model import LogisticRegression
...
...
>>> class PCAOp(SKUnsupervisedOp):
... training_update_version = VersionType.MAJOR
... model_parameters = VersionedFieldDict(VersionType.MAJOR, {"n_components": 2})
... model_class = VersionedField(PCA, VersionType.MAJOR)
...
>>> class LogisticOp(SKSupervisedOp):
... training_update_version = VersionType.PATCH
... model_class = LogisticRegression

Once your ops are created, you can create your various training and prediction pipelines:

>>> from chariots import Pipeline, MLMode
>>> from chariots.nodes import Node
...
...
>>> train = Pipeline([
... Node(IrisFullDataSet(), output_nodes=["x", "y"]),
... Node(PCAOp(MLMode.FIT_PREDICT), input_nodes=["x"], output_nodes="x_transformed
→˓"),
... Node(LogisticOp(MLMode.FIT), input_nodes=["x_transformed", "y"])

(continues on next page)

51

https://pypi.python.org/pypi/chariots
https://travis-ci.org/aredier/chariots
https://chariots.readthedocs.io/en/latest/?badge=latest
https://github.com/aredier/chariots/blob/master/LICENSE
https://chariots.readthedocs.io

chariots Documentation, Release 0.2.4

(continued from previous page)

...], 'train')

...
>>> pred = Pipeline([
... Node(PCAOp(MLMode.PREDICT), input_nodes=["__pipeline_input__"], output_nodes=
→˓"x_transformed"),
... Node(LogisticOp(MLMode.PREDICT), input_nodes=["x_transformed"], output_nodes=[
→˓'__pipeline_output__'])
...], 'pred')

Once all your pipelines have been created, deploying them is as easy as creating a creating a Chariots object:

>>> from chariots import Chariots
...
...
>>> app = Chariots([train, pred], app_path, import_name='iris_app')

The Chariots class inherits from the Flask class so you can deploy this the same way you would any flask application.

Once this the server is started, you can use the chariots client to query your machine learning micro-service from
python:

>>> from chariots import Client
...
...
>>> client = Client()

with this client we will be

• training the models

• saving them and reloading the prediction pipeline (so that it uses the latest/trained version of our models)

• query some prediction

>>> client.call_pipeline(train)
>>> client.save_pipeline(train)
>>> client.load_pipeline(pred)
>>> client.call_pipeline(pred, [[1, 2, 3, 4]])
[1]

9.2 Features

• versionable individual op

• easy pipeline building

• easy pipelines deployment

• ML utils (implementation of ops for most popular ML libraries with adequate Versionedfield) for sklearn and
keras at first

• A CookieCutter template to properly structure your Chariots project

52 Chapter 9. chariots

chariots Documentation, Release 0.2.4

9.3 Comming Soon

Some key features of Chariot are still in development and should be coming soon:

• Cloud integration (integration with cloud services to fetch and load models from)

• Graphql API to store and load information on different ops and pipelines (performance monitoring, . . .)

• ABTesting

9.4 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
audreyr/cookiecutter-pypackage’s project is also the basis of the Chariiots project template

9.3. Comming Soon 53

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypac
https://github.com/audreyr/cookiecutter-pypac

chariots Documentation, Release 0.2.4

54 Chapter 9. chariots

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

55

chariots Documentation, Release 0.2.4

56 Chapter 10. Indices and tables

PYTHON MODULE INDEX

c
chariots, 34
chariots.base, 11
chariots.callbacks, 18
chariots.cli, 34
chariots.errors, 34
chariots.keras, 29
chariots.nodes, 20
chariots.ops, 24
chariots.runners, 25
chariots.savers, 25
chariots.serializers, 26
chariots.sklearn, 27
chariots.versioning, 30

57

chariots Documentation, Release 0.2.4

58 Python Module Index

INDEX

A
after_execution() (chariots.base.BaseOp

method), 12
after_execution() (chari-

ots.callbacks.OpCallBack method), 18
after_execution() (chari-

ots.callbacks.PipelineCallback method),
19

after_node_execution() (chari-
ots.callbacks.PipelineCallback method),
19

allow_version_change() (chari-
ots.base.BaseMLOp property), 14

allow_version_change() (chariots.base.BaseOp
property), 12

B
BackendError, 34
BaseMLOp (class in chariots.base), 13
BaseNode (class in chariots.base), 16
BaseOp (class in chariots.base), 11
BaseRunner (class in chariots.base), 14
BaseSaver (class in chariots.base), 15
BaseSerializer (class in chariots.base), 15
before_execution() (chariots.base.BaseOp

method), 12
before_execution() (chari-

ots.callbacks.OpCallBack method), 19
before_execution() (chari-

ots.callbacks.PipelineCallback method),
20

before_node_execution() (chari-
ots.callbacks.PipelineCallback method),
20

C
call_pipeline() (chariots.Client method), 38
Chariots (class in chariots), 36
chariots (module), 34
chariots.base (module), 11
chariots.callbacks (module), 18
chariots.cli (module), 34

chariots.errors (module), 34
chariots.keras (module), 29
chariots.nodes (module), 20
chariots.ops (module), 24
chariots.runners (module), 25
chariots.savers (module), 25
chariots.serializers (module), 26
chariots.sklearn (module), 27
chariots.versioning (module), 30
check_version_compatibility() (chari-

ots.base.BaseNode method), 16
check_version_compatibility() (chari-

ots.nodes.Node method), 21
Client (class in chariots), 37
creation_time() (chariots.versioning.Version prop-

erty), 32
CSVSerializer (class in chariots.serializers), 27

D
DataLoadingNode (class in chariots.nodes), 22
DataSavingNode (class in chariots.nodes), 23
deserialize_object() (chari-

ots.base.BaseSerializer method), 15
deserialize_object() (chari-

ots.serializers.CSVSerializer method), 27
deserialize_object() (chari-

ots.serializers.DillSerializer method), 26
deserialize_object() (chari-

ots.serializers.JSONSerializer method),
27

DillSerializer (class in chariots.serializers), 26

E
execute() (chariots.base.BaseMLOp method), 14
execute() (chariots.base.BaseNode method), 17
execute() (chariots.base.BaseOp method), 12
execute() (chariots.nodes.DataLoadingNode

method), 23
execute() (chariots.nodes.DataSavingNode method),

23
execute() (chariots.nodes.Node method), 21
execute() (chariots.ops.LoadableOp method), 24

59

chariots Documentation, Release 0.2.4

execute() (chariots.Pipeline method), 35
execute_node() (chariots.Pipeline method), 35
execute_with_all_callbacks() (chari-

ots.base.BaseOp method), 12
extract_results() (chariots.Pipeline static

method), 35

F
FileSaver (class in chariots.savers), 26
FIT (chariots.MLMode attribute), 40
fit() (chariots.base.BaseMLOp method), 14
fit() (chariots.keras.KerasOp method), 30
fit() (chariots.sklearn.SKSupervisedOp method), 28
fit() (chariots.sklearn.SKUnsupervisedOp method),

29
FIT_PREDICT (chariots.MLMode attribute), 40

G
get_all_versions_of_op() (chariots.OpStore

method), 39
get_op_bytes_for_version() (chariots.OpStore

method), 39
get_pipeline_versions() (chariots.Pipeline

method), 35
get_validated_links() (chariots.OpStore

method), 39

H
handle() (chariots.errors.VersionError static method),

34

I
input_params (chariots.keras.KerasOp attribute), 30
is_loadable() (chariots.base.BaseNode property),

17
is_loadable() (chariots.nodes.Node property), 22
is_pipeline_loaded() (chariots.Client method),

38

J
JSONSerializer (class in chariots.serializers), 27

K
KerasOp (class in chariots.keras), 29

L
load() (chariots.base.BaseMLOp method), 14
load() (chariots.base.BaseSaver method), 15
load() (chariots.ops.LoadableOp method), 24
load() (chariots.Pipeline method), 35
load() (chariots.savers.FileSaver method), 26
load_latest_version() (chariots.base.BaseNode

method), 17

load_latest_version() (chariots.nodes.Node
method), 22

load_pipeline() (chariots.Client method), 38
LoadableOp (class in chariots.ops), 24

M
MAJOR (chariots.versioning.VersionType attribute), 33
major() (chariots.versioning.Version property), 32
MINOR (chariots.versioning.VersionType attribute), 33
minor() (chariots.versioning.Version property), 32
MLMode (class in chariots), 40
mode() (chariots.base.BaseMLOp property), 14

N
name() (chariots.base.BaseNode property), 17
name() (chariots.base.BaseOp property), 12
name() (chariots.nodes.Node property), 22
name() (chariots.Pipeline property), 35
Node (class in chariots.nodes), 20
node_for_name() (chariots.Pipeline property), 36
node_version() (chariots.base.BaseNode property),

17
node_version() (chariots.nodes.DataLoadingNode

property), 23
node_version() (chariots.nodes.DataSavingNode

property), 24
node_version() (chariots.nodes.Node property), 22
nodes() (chariots.Pipeline property), 36

O
op_version() (chariots.base.BaseMLOp property),

14
op_version() (chariots.base.BaseOp property), 13
OpCallBack (class in chariots.callbacks), 18
OpStore (class in chariots), 39
output_references() (chariots.base.BaseNode

property), 17

P
parse() (chariots.versioning.Version class method), 32
PATCH (chariots.versioning.VersionType attribute), 33
patch() (chariots.versioning.Version property), 32
persist() (chariots.base.BaseNode method), 17
persist() (chariots.nodes.Node method), 22
Pipeline (class in chariots), 34
pipeline_input (chariots.nodes.ReservedNodes at-

tribute), 24
pipeline_output (chariots.nodes.ReservedNodes

attribute), 24
pipeline_versions() (chariots.Client method), 38
PipelineCallback (class in chariots.callbacks), 19
PREDICT (chariots.MLMode attribute), 40
predict() (chariots.base.BaseMLOp method), 14

60 Index

chariots Documentation, Release 0.2.4

predict() (chariots.keras.KerasOp method), 30
predict() (chariots.sklearn.SKSupervisedOp

method), 28
predict() (chariots.sklearn.SKUnsupervisedOp

method), 29
prepare() (chariots.Pipeline method), 36

R
reference() (chariots.nodes.ReservedNodes prop-

erty), 24
register_valid_link() (chariots.OpStore

method), 40
replace_symbolic_references() (chari-

ots.base.BaseNode method), 17
require_saver() (chariots.base.BaseNode prop-

erty), 17
requires_runner() (chariots.base.BaseNode prop-

erty), 17
requires_runner() (chariots.nodes.Node prop-

erty), 22
ReservedNodes (class in chariots.nodes), 24
run() (chariots.base.BaseRunner method), 14
run() (chariots.runners.SequentialRunner method), 25

S
save() (chariots.base.BaseSaver method), 15
save() (chariots.OpStore method), 40
save() (chariots.Pipeline method), 36
save() (chariots.savers.FileSaver method), 26
save_op_bytes() (chariots.OpStore method), 40
save_pipeline() (chariots.Client method), 39
SequentialRunner (class in chariots.runners), 25
serialize() (chariots.base.BaseMLOp method), 14
serialize() (chariots.ops.LoadableOp method), 24
serialize_object() (chariots.base.BaseSerializer

method), 15
serialize_object() (chari-

ots.serializers.CSVSerializer method), 27
serialize_object() (chari-

ots.serializers.DillSerializer method), 26
serialize_object() (chari-

ots.serializers.JSONSerializer method),
27

serializer_cls (chariots.base.BaseMLOp at-
tribute), 14

SKSupervisedOp (class in chariots.sklearn), 28
SKUnsupervisedOp (class in chariots.sklearn), 28

T
TestClient (class in chariots), 39
training_update_version (chari-

ots.base.BaseMLOp attribute), 14

U
update() (chariots.versioning.Version method), 32
update_major() (chariots.versioning.Version

method), 33
update_minor() (chariots.versioning.Version

method), 33
update_patch() (chariots.versioning.Version

method), 33

V
Version (class in chariots.versioning), 32
version_dict() (chari-

ots.versioning.VersionedFieldDict property),
33

VersionableMeta (class in chariots.versioning), 33
VersionedField (class in chariots.versioning), 33
VersionedFieldDict (class in chariots.versioning),

33
VersionError, 34
VersionType (class in chariots.versioning), 33

Index 61

	Installation
	Stable release
	From sources

	General Principles
	Versioning
	Pipelines, Nodes & Ops

	Tutorials
	Iris Tutorial

	Api Docs
	chariots.base
	chariots.callbacks
	chariots.nodes
	chariots.ops
	chariots.runners
	chariots.savers
	chariots.serializers
	chariots.sklearn
	chariots.keras
	chariots.versioning
	chariots.cli
	chariots.errors

	Chariots template
	File Structure
	tools

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2019-06-15)
	0.2.0 (2019-06-15)

	chariots
	Getting Started: 30 seconds to Chariots:
	Features
	Comming Soon
	Credits

	Indices and tables
	Python Module Index
	Index

